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Abstract 49 

While the introduction of highly automated vehicles promises lower accident numbers, a main 50 

requirement for wide use of these vehicles will be the acceptance by drivers. In this study a 51 

crucial variable for the acceptance of highly automated vehicles, the vehicle to vehicle 52 

distance expressed in time headway, was researched in a driving simulator. Research has 53 

shown that time headway distances, perceived as comfortable in self-driving and assisted 54 

driving with adaptive cruise control, remain constant over a range of different speeds. This 55 

study aims to test these findings for highly automated driving. Since time headway is 56 

perceived visually, the driving situation was varied to investigate the influence of visibility on 57 

the subjective comfort of the driver in a highly automated driving situation. In a within-58 

subject design, drivers followed a passenger car in clear weather conditions, the same 59 

passenger car in fog which occluded parts of the traffic environment, as well as a truck that 60 

occluded the lane ahead, also in clear weather condition. Subjective comfort of drivers in each 61 

condition was rated with a haptic rating lever. 62 

Results suggest that comfortable time headway following distances in highly automated 63 

driving are not constant over different speeds, but that these distances decrease with 64 

increasing speed. Reduced visibility generally led to a shift in comfortable following distances 65 

towards larger headways. These results have implications for the introduction of highly 66 

automated vehicles and their time headway adjustments, which will need to be adaptive to 67 

speed and visibility in the road environment.  68 

 69 

1. Introduction 70 

Past research suggests that time headway is a variable held constant by individual drivers in 71 

self-driving (Siebert, Oehl, & Pfister, 2014; Siebert, Oehl, Bersch, & Pfister, 2017; Van 72 

Winsum & Heino, 1996), and the individual choice of time headway has been related to the 73 

drivers’ awareness of risk and comfort (Lewis-Evans, De Waard, & Brookhuis, 2010). 74 

However, there has been comparatively little research on the influence of longitudinal vehicle 75 

to vehicle distances of highly automated vehicles on the subjective experience of drivers, with 76 

a small number of studies pointing to the importance of time headway adjustments in highly 77 

automated driving (Bellem, Schönenberg, Krems, & Schrauf, 2016; De Waard, Van der Hulst, 78 

Hoedemaeker, & Brookhuis, 1999). Since drivers will not be able to regulate their following 79 

distance in highly automated driving as freely as in self-driving, it is important to understand 80 
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how time headway distances need to be adjusted for highly automated driving, without drivers 81 

feeling uncomfortable. Therefore, this study tested how results of constant time headway 82 

following from self- and assisted driving translate to highly automated driving. A general 83 

preference for constant time headway following in highly automated driving would imply that 84 

the complete secession of control by the driver of the car does not alter the effect of preferred 85 

constant time headways found in self- and assisted-driving. In turn, this would allow car 86 

manufacturers to program highly automated vehicles to follow at a constant time headway 87 

over a broad speed range. 88 

Another goal of this study was to investigate the influence of different visibility conditions on 89 

preferred following distances in highly automated driving. Since time headway is the result of 90 

a visual estimation of the vehicle to vehicle distance divided by an estimation of the vehicle 91 

speed, the accuracy of an individual’s time headway estimation depends on the visibility 92 

condition. Effects of changing following distances under adverse visibility on car following 93 

have been studied for self-driving, and we hope to extend this research to highly automated 94 

driving. 95 

 96 

1.1 Constant time headway following 97 

A large number of studies have found that drivers follow other vehicles with a constant time 98 

headway at different speeds, and prefer constant time headway following to non-constant 99 

following when presented with a number of time headways at different speeds (Ayres, Li, 100 

Schleuning, & Young, 2001; Siebert et al., 2014, 2017; Taieb-Maimon & Shinar, 2001; Van 101 

Winsum & Heino, 1996). Siebert et al. (2014, 2017) researched car following preferences for 102 

the use of adaptive cruise control and found stable individual time headway preferences. Most 103 

preferred headways in self- and assisted-driving are found in the range of one to two seconds 104 

in simulated as well as in real-life driving, although preferred time headways of individual 105 

drivers differ. In all earlier studies on the relation between the subjective experience of drivers 106 

and time headway, drivers either had complete control over the vehicle (Ayres et al., 2001; 107 

Taieb-Maimon & Shinar, 2001; Van Winsum & Heino, 1996), or were actively controlling 108 

the steering wheel in studies where an adaptive cruise control system was implemented 109 

(Siebert et al., 2014, 2017). It is therefore unclear how the complete absence of active control 110 

over the vehicle in highly automated driving influences the subjective experience of time 111 

headways. Researchers have hypothesized that speed influences the subjective experience of 112 
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drivers in in highly automated driving differently than in self- or assisted driving, due to a 113 

lack of immediate controllability of the driving situation (De Vos, Theeuwes, Hoekstra, & 114 

Coëmet, 1997; Telpaz, et al., 2018). 115 

 116 

1.2 Driving in fog and behind larger vehicles 117 

Van Winsum (1999) postulates in his mathematical model of human car following that a 118 

reduced visibility in the driving environment due to fog or rain should in theory lead to an 119 

increase in time headway “as an increase of the safety margin to compensate for later 120 

detections of decelerations of lead vehicles” (p. 209). However, researchers have found 121 

conflicting results for following behavior during fog. While in some studies drivers increase 122 

their time headway when visibility is reduced (Van der Hulst, Rothengatter, Meijman, 1998) 123 

and their perceived risk is increased (Saffarian, Happee, De Winter, 2012), in other studies 124 

drivers follow closer when the visibility is reduced due to fog (Al-Ghamdi, 2007). 125 

Researchers have also found interindividual differences when driving in heavy fog (visibility 126 

limit of 41 m), with some drivers reducing time headway to within the visibility range of the 127 

lead vehicle, and other drivers increasing their time headway, thereby losing sight of the lead 128 

vehicle (Broughton, Switzer, and Scott, 2007).  129 

Apart from reduced visibility of the driving environment due to weather, forward visibility 130 

can also be reduced when following large vehicles such as trucks or busses. For following 131 

larger vehicles there is no clear effect on following distances compared to following normal 132 

sized vehicles in self-driving. Studies have found increased time headways (Green & Yoo, 133 

1999; Wasielewski, 1981), decreased time headways (Brackstone, Waterson, & McDonald, 134 

2009; Sayer, Mefford, & Huang, 2000), and increasing as well as decreasing time headways 135 

depending on driving speed (Duan, Li, & Salvendy, 2013). Since this study is the first to 136 

compare following distances during clear and reduced visibility in highly automated driving, 137 

we base our hypotheses on Van Winsum’s mathematical model of human car following 138 

(1999), and assume that a decrease in visibility will necessitate and increase in time headway 139 

distances. 140 

 141 

 142 

 143 
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1.3 Using a haptic lever for feedback on subjective experience in driving 144 

Different subjective variables have been used as dependent variables when participants are 145 

asked to rate their subjective experience of different time headways. Earlier studies have 146 

shown that subjective variables highly correlate with each other when time headways are 147 

rated (Lewis-Evans et al., 2010; Siebert et al., 2014). In this study, comfort was chosen as the 148 

dependent variable because it can be described in a positive and negative valence by the 149 

words comfort (German: angenehm) and discomfort (German: unangenehm). Due to 150 

translation imprecision, the German terms could also be translated as pleasant and unpleasant. 151 

Furthermore, a bi-directional haptic lever was used instead of single items in a likert-scale 152 

format used by Lewis-Evans et al. (2010) and Siebert et al. (2014). An advantage of this 153 

method is the simultaneous evaluation of the vehicle to vehicle distance, compared to a 154 

retrospective rating by a subsequent questionnaire. Additionally, the lever allows the 155 

participants to focus on the leading vehicle while rating the vehicle to vehicle distance since 156 

the lever can be adjusted without looking at it. The type of lever used in this study has been 157 

positively evaluated for linearity of ratings (Vehrs, 1986). A study by Charlton, Starkey, 158 

Perrone, and Isler (2014) showed that participants are able to concurrently rate the risk of a 159 

traffic situation by using a haptic risk-meter, similar in function to the lever used in this study. 160 

 161 

1.4 Goals of this study 162 

In this driving simulator study, the forward visibility of drivers in a highly automated vehicle 163 

was systematically varied at different speeds. To assess the impact of different time headways 164 

and reduced visibility on the subjective experience of the participants, drivers indicated their 165 

subjective level of comfort by moving a bi-directional haptic lever with their right hand. 166 

Participants were then presented with different vehicle to vehicle distances and the lever 167 

position was recorded continuously for these different distances.  168 

We expected that in highly automated driving (1) speed does influence the comfort ratings for 169 

specific time headways and (2) reduced visibility reduces subjective comfort ratings for 170 

distances when compared to the clear visibility condition. 171 

 172 

 173 



7 
 

2. Method 174 

2.1 Participants 175 

Thirty-nine participants took part in this study. Due to technical difficulties with the scaling 176 

lever, 4 participants were excluded from the analysis. All results reported in this paper are 177 

based on the sample of the 35 participants where no technical difficulties occurred. Of these 178 

35 participants, 17 were female and 18 were male. Participants had a mean age of M = 22.46 179 

years (SD = 5.84). All participants were in possession of a valid driver’s license, that they had 180 

acquired an average of M = 4.96 years (SD = 5.86) before the study. On average, participants 181 

estimated to drive M = 8820.57 kilometers per year (SD = 18902.6) with a minimum of 20 182 

and a maximum of 100000 kilometers. The average accumulated driving experience of the 183 

participants was approximately 108,000 kilometers. About one third of the participants owned 184 

a car, and more than 50% of the participants used their own or another car at least once a 185 

week. Thirty-four participants were right-handed, with one participants being ambidextrous. 186 

Participants were recruited from the student body of the Leuphana University Lüneburg as a 187 

convenient sample. For their participation, participants were given “study-subject hours” that 188 

they have to acquire during their time at the university. 189 

 190 

2.2 Experimental design 191 

In this experiment, visibility was varied threefold (clear vs. truck vs. fog), speed was varied 192 

threefold (50km/h vs. 100km/h vs. 150km/h), and time headway was varied tenfold (0.5 vs. 193 

1.0 vs. 1.25 vs. 1.5 vs. 1.75 vs. 2.0 vs. 2.5 vs. 3.0 vs. 3.5 vs. 4.0). Two extra time headway 194 

increments (1.25 and 1.75 seconds) were added to more finely represent typical time 195 

headways found in earlier studies (Siebert et al., 2014, 2017). The resulting 90 experimental 196 

conditions were grouped in 9 blocks, each block consisting of a randomized order of ten time 197 

headways for the same visibility and speed. These 9 blocks were then randomly presented to 198 

participants. All participants were presented with the 90 experimental conditions in a within-199 

subject design. 200 

Each experimental condition lasted 10 seconds, and each experimental block lasted about 120 201 

seconds. There were short pauses of about 2-3 seconds between the conditions within each 202 

block, and longer pauses of 20-30 seconds between blocks, when a new block was loaded into 203 

the driving simulation software. 204 
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2.3 Driving simulator and driving environment  205 

The study was conducted at the Leuphana University Lüneburg in a fixed-base driving 206 

simulator cabin resembling a Volkswagen Golf 4 GTI with automatic transmission. To 207 

simulate the driving environment, SCANeR Studio Driving Simulation Software version 1.4 208 

from Oktal was used. The driving environment was projected onto three screens in front of 209 

the simulator cabin for a total resolution of 3072x768 pixels with three video projectors. Each 210 

single screen had a size of 1.4 x 1.4 meters. The outer screens were positioned at an angle of 211 

120° to the center screen. The driver seat was positioned 2 meters from the center screen, 212 

resulting in a horizontal field of view of approximately 110° and a vertical field of view of 213 

approximately 30°. The physical and simulated eye height of the participants was 1.25m. The 214 

simulated car model was a compact car, a Citroën C4. The speedometer of the simulator was 215 

inactive during the experiment. Simulation data were saved with a frequency of 20 Hz. 216 

Three driving environments were programmed for this study, with each environment 217 

representing a road type where a speed of 50, 100, or 150km/h could be expected. The 218 

50km/h driving environment resembled an inner city road with one lane in each direction. The 219 

100km/h driving environment was modelled after a German rural road, with two lanes in each 220 

direction, with opposing lanes divided by a solid line. The 150km/h condition was modelled 221 

after a German “Autobahn”, a highway road where the advised speed is 130km/h, but 222 

generally there is no enforced speed limit. In this condition there were three lanes in each 223 

direction, and opposing traffic was separated by a guard railing. Each environment had only 224 

minimal road curvature, no slope, and sparse oncoming traffic. There were no side-streets in 225 

any of the road environments and there was no cross traffic by pedestrians. Road side 226 

buildings and trees had a minimum distance of 20 meters to the side of the road. The 227 

participant’s vehicle and the lead vehicle always drove in the right-most lane. 228 

Screenshots of the three visibility conditions are shown in Figure 1. The lead vehicle in the 229 

clear condition was a compact car, the lead vehicle in the truck condition was a truck, and the 230 

lead vehicle in the fog condition was the same compact car as in the clear condition. The fog 231 

in the fog condition was set to a range of 200 m, resulting in light fog with a visibility limit of 232 

200 m. 233 
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 234 

Figure 1. Screenshots of the center projection of the three visibility and three speed conditions 235 

for a time headway of 2 seconds: fog & 50km/h (left), truck & 100km/h (middle), clear & 236 

150km/h (right). 237 

 238 

2.4 Procedure 239 

After participants arrived at the simulator, they filled out a short demographic questionnaire 240 

and were then seated in the driver’s seat of the simulator. The experimenter then explained the 241 

use of the simulator, and participants’ task in the experiment. The instruction for using the 242 

rating lever was as follows (translated from German): 243 

“Today you will be shown multiple driving situations in the driving simulator. During these 244 

situations, you do not need to control the car, as the car drives by itself. You do not need to 245 

steer, brake, or accelerate. Next to you there is a lever that can be moved in two directions, to 246 

the front and to the back. You will feel a light resistance that tries to automatically move the 247 

lever to a middle position. The lever position at the maximum front position represents 248 

“uncomfortable” (German “unangenehm”), the middle lever position represents “neutral” 249 

(German “neutral”), and the maximum back position is “comfortable” (German “angenehm”). 250 

Now take the lever into your hand and familiarize yourself with it by moving it to the front 251 

and the back multiple times. Now try some lever positions without looking at the lever. In the 252 

following you will see multiple consecutive driving situations. Please indicate the intensity of 253 

your feelings toward the distance to the lead vehicle, by adjusting the lever between 254 

“comfortable”, “neutral”, and “uncomfortable” and keeping the lever in this position for the 255 

whole driving situation. Please only rate the distance to the lead vehicle and not the other 256 

traffic or the driving environment.” 257 

A figure with the lever positions with the “comfortable”, “neutral”, and “uncomfortable” 258 

position was shown to participants during the explanation of the lever positions. This part of 259 

the instruction was followed by a short training in which the experimenter instructed the 260 
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participant to imagine a positive, a negative, and a neutral event and use the lever to rate his 261 

or her feelings during this event. The participant was then reminded to focus their gaze on the 262 

driving situations and not on the lever and the first block of driving situations was started. 263 

 264 

2.5 Comfort rating lever 265 

Participants rated their subjective experience of the vehicle to vehicle distance on a bi-266 

directional haptic lever (Figure 2). The lever used in this study is an adapted version of the 267 

“Vehrs-Hebel” (engl. “Vehrs-Lever”), developed by Wolfgang Vehrs (1986) for the non-268 

verbal rating of stimuli. The self-centering lever-arm protrudes out of the top end of a heavy 269 

base that houses the mechanics of the lever. Using an orthogonally placed handle at the top, 270 

the lever can be moved within 15 cm, i.e., for 7.5cm from its middle position to each edge of 271 

the box. Placed under the driving simulator cabin, the lever arm protrudes out of the middle 272 

console in front of the gearstick. Tests on the use of the lever for ratings of subjective 273 

experiences by Vehrs (1986) as well as a pretest by the authors of this study suggest that 274 

participants are able to express their subjective experience accurately with the help of the 275 

lever. The lever position is saved as a percentage value with a frequency of 20 Hz. A 276 

“comfortable” lever rating, i.e., a participant pulls the lever as close toward him- or herself as 277 

possible, results in a 100% value. A “neutral” lever rating, where the lever is positioned in the 278 

middle, results in a 50% value. An “uncomfortable” rating where a participant pushes the 279 

lever as far away as possible from him- or herself results in a 0% value (Figure 2). 280 

The direction of valence of lever ratings (see 2.4) was chosen for two reasons. First, it is more 281 

natural to have “uncomfortable” ratings defined as a lever push away from the body, and 282 

“comfortable” ratings as a pulling movement towards the own body (Chen & Bargh, 1999; 283 

Solarz, 1960). Second, since time headways for a given speed are represented as gaps between 284 

the participant’s vehicle and the lead vehicle, the lever movement could in theory just copy 285 

this gap between the two vehicles. In this case, the lever would present the position of the lead 286 

vehicle. Defining the lever ratings in a way that prohibits this replication of the lead vehicle 287 

position with the lever helps to prevent this effect. Apart from the exact lever position, the 288 

median of all lever ratings is an indicator if the majority of participants rates a distance as 289 

comfortable (median position > 50%) or uncomfortable (median position < 50%). 290 
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 291 

Figure 2. Rating lever and scaling direction. 292 

 293 

2.6 Analysis 294 

The raw data output of the lever were pre-processed before any calculations were conducted. 295 

Since conditions were presented consecutively, the initial lever position of a condition was 296 

influenced by the final lever position of the preceding condition. As participants were 297 

instructed to maintain a lever position once the lever was at the intended position, we looked 298 

at the standard deviation of the lever position, as it indicates movement of the lever.  299 

The standard deviation of all ratings in this study was plotted, including each condition and 300 

each participant, resulting in one average of standard deviation for 10 seconds of rating. These 301 

10 seconds were consecutively shortened in 0.5 second steps starting from the beginning, until 302 

there were only the last 0.5 seconds of the condition left. The resulting data (Figure 3) showed 303 

that standard deviation in the lever data decreases as the first few seconds of each condition 304 

are eliminated. From Figure 3 it can be assumed that the majority of participants require about 305 

5 seconds to arrive at the intended lever position. Due to this, the lever data of the first five 306 

seconds of each condition was not included in the calculation of the lever position. Only the 307 

last 5 seconds (100 data points) of each condition are averaged and used as the comfort rating 308 

for a given condition. 309 
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 310 

Figure 3. Average standard deviation of the lever position for different condition times, 311 
reduced by 0.5 second increments from the start of the condition (error bars show the standard 312 

deviation). 313 

All rating data were analyzed by a three-way (3x3x10) repeated measures analysis of variance 314 

(ANOVA), with visibility (within-subjects; clear vs. fog vs. truck), speed (within-subjects; 315 

50km/h vs. 100km/h vs. 150km/h), and time headway (within-subjects; 0.5 vs. 1.0 vs. 1.25 vs. 316 

1.5 vs. 1.75 vs. 2.0 vs. 2.5 vs. 3.0 vs. 3.5 vs. 4.0) as the independent variables and comfort 317 

(rated through the lever) as the dependent variable.  318 

 319 

3. Results 320 

3.1 Influence of speed on comfortable time headways 321 

Mean comfort ratings for time headways under different visibility and speed conditions are 322 

presented in Figure 4. We assumed that speed does influence comfort ratings for specific time 323 

headways. The influence of speed on comfort ratings was tested in a three-way ANOVA, 324 

comparing speed as one of the factors at 50, 100 and 150 km/h. Since Mauchly’s Test 325 

revealed that the assumption of sphericity had been violated for the main effect of speed (χ2(2) 326 

= 8.92, p < .012), Greenhouse-Geisser corrected degrees of freedom were used (ε = .81). 327 

There was a significant main effect of speed on comfort ratings of time headways (F(1.62, 54.98) 328 

= 42.22, p < .01, p
2 = .55). For nearly all time headways, participants rated following at 329 

lower speeds as less comfortable than following at higher speeds (Figure 4). Comfort in the 330 

clear visibility condition (top of Figure 4) was lowest for the 50km/h condition, followed by 331 

the 100km/h condition, with the 150km/h condition rated as the most comfortable on average. 332 

This difference in ratings can also be observed for the fog and the truck condition, where time 333 
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headways of lower speeds are rated as less comfortable when compared to the same time 334 

headways at higher speeds. Post-hoc tests using Bonferroni correction for multiple 335 

comparisons revealed significant differences between comfort ratings of all three speed 336 

conditions (all p < .01).  337 

 338 

 339 

 340 

 341 

Figure 4. Mean comfort ratings for different time headways at 50, 100, and 150km/h and three 342 

visibility conditions (error bars show the 95% confidence interval). 343 
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3.2 Influence of visibility on comfortable time headways 344 

We hypothesized that reduced visibility leads to a decrease in comfort ratings of time 345 

headways when compared to clear visibility. To test the influence of visibility on comfort 346 

ratings, three visibility conditions (clear vs. fog vs. truck) were compared as one factor in a 347 

three-way ANOVA. There was a significant main effect of visibility on comfort ratings of 348 

time headways (F(2 , 68) = 16.87, p < .01, p
2  = .33). Post-hoc tests using Bonferroni correction 349 

for multiple comparisons revealed that comfort in the clear visibility condition is significantly 350 

higher than in the truck and the fog condition (both p < .01). There was no significant 351 

difference between comfort ratings of the truck and the fog condition (p = 1.0). 352 

Descriptively, participants rated shorter time headways (< 3 s) in the fog condition as more 353 

comfortable than in the truck condition. However, for larger time headways (≥ 3 s) following 354 

in fog was rated as less comfortable than following a truck. Furthermore, comfort ratings for 355 

the clear and truck visibility conditions increase with increasing time headways, while 356 

comfort ratings for the fog condition remain more constant even when time headway 357 

increases. Due to this effect, large time headways are less comfortable in a foggy environment 358 

than in the truck or clear visibility condition. 359 

3.3 Interaction of visibility and speed 360 

The ANOVA revealed a significant interaction for the influence of visibility and speed on 361 

comfort ratings (F(4, 136) = 2.86, p = .026, p
2  = .078). An interaction graph with a shortened y-362 

axis for better visibility is plotted in Figure 5.  363 

 364 
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 365 

Figure 5. Interaction graph for mean lever ratings for all visibility and speed conditions 366 

(please note the shortened y-axis). Error bars show the 95% confidence interval.  367 

In Figure 5 the main effect of speed is visible, comfort generally increases with higher speeds. 368 

A difference between the clear condition and reduced visibility conditions can also be 369 

observed, reduced visibility leads to a decrease in comfort, when compared to the clear 370 

visibility condition (all p < .01 after Bonferroni correction for multiple comparisons). 371 

Between the two reduced visibility conditions however, an interaction between visibility and 372 

speed can be observed descriptively. For the 100 and 150km/h condition, comfort ratings of 373 

the truck and fog condition are descriptively similar and do not significantly differ (all 374 

p > .05). However, the mean comfort ratings of the truck condition at 50km/h are 375 

descriptively lower than ratings for the fog condition of the same speed (Figure 5). 376 

Calculating a separate repeated-measure ANOVA for the 50km/h condition however does not 377 

show a significant difference between the two reduced visibility conditions, as it just fails to 378 

be significant at p = 0.57 after Bonferroni correction for multiple comparisons. 379 

 380 

3.4 Comfortable vs. uncomfortable time headways 381 

Through descriptively analyzing the median lever position for an individual experimental 382 

condition, it is possible to determine if a majority of participants rated a given time headway 383 

as comfortable or uncomfortable. Therefore, median lever ratings can be used to descriptively 384 
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quantify the influence of speed and visibility changes on comfort ratings of time headways. 385 

Median lever positions for all conditions are presented in Table 1.  386 

For example, in the clear condition at 50km/h, the majority of participants rate time headways 387 

of 1.5 seconds and higher as comfortable, i.e. the median lever rating for these time headways 388 

is higher than 50% indicating comfortable distances (Figure 2). For 100km/h this threshold 389 

shifts to 1.25 seconds, i.e. with a speed increase of 50km/h the time headway distance can be 390 

reduced by 0.25 seconds without the majority of participants perceiving the distance as 391 

uncomfortable. With an additional increase of the speed to 150km/h the time headway 392 

distance again can be reduced by 0.25 seconds, resulting in a following distance of 1.0 393 

seconds that is still perceived as comfortable by a majority of participants. For reduced 394 

visibility conditions, i.e. driving in fog or behind a truck, a similar effect of speed can be 395 

found. With increasing speed, time headway following distances can be decreased without the 396 

majority of participants perceiving the distances as uncomfortable (see Table 1).  397 

For a reduced visibility road environment, it is necessary to increase time headway. At 398 

50km/h, time headway needs to be increased by 1 second when a driver is transferring from 399 

e.g. a clear visibility environment, to a foggy road environment, or the lead car changes from 400 

a passenger car to a truck. At higher speeds, this shift is less pronounced but still present 401 

(Table 1). Through Table 1 it is possible to exactly quantify how time headways need to be 402 

changed for varying speeds and visibility. 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 



17 
 

Table 1. Median lever ratings for different time headways (TH), speeds, and visibility 411 

conditions. 412 

 50km/h  100km/h  150km/h 

TH clear fog truck 
 

clear fog truck 
 

clear fog truck 

0.5 2.8% 1.9% 1.6%  9.2% 6.1% 2.4%  14.8% 12.0% 3.5% 

1.0 29.4% 23.9% 17.2%  42.4% 35.1% 25.6%  51.4% 43.8% 38.2% 

1.25 38.8% 34.6% 24.6%  51.5% 40.6% 34.7%  56.2% 51.7% 45.9% 

1.5 51.0% 42.5% 35.5%  52.0% 44.6% 43.7%  58.6% 60.2% 51.5% 

1.75 51.5% 44.6% 39.4%  56.2% 51.4% 51.5%  69.1% 60.4% 52.4% 

2.0 52.2% 49.9% 44.6%  58.0% 51.5% 52.4%  66.6% 56.3% 63.4% 

2.5 60.3% 52.1% 51.9%  66.1% 57.0% 52.0%  75.7% 59.5% 69.1% 

3.0 65.0% 51.6% 57.1%  67.6% 59.4% 62.7%  83.7% 64.5% 74.6% 

3.5 66.4% 55.8% 56.9%  75.9% 68.7% 70.9%  88.1% 56.4% 81.4% 

4.0 72.5% 61.3% 65.9%  72.8% 68.3% 75.2%  97.0% 62.4% 96.4% 

Comfortable ratings with median lever position > 50% in bold. 

 413 

4. Discussion 414 

In this study we examined the influence of different time headways on subjective comfort 415 

when following another vehicle with different speeds under different visibility conditions in a 416 

highly automated vehicle. In our first hypothesis we postulated that speed would influence the 417 

subjective comfort for a given time headway. Our data supports this hypothesis, time 418 

headways at lower speeds were rated as less comfortable than the same time headways at 419 

higher speeds. This result stands in contrast to results of earlier studies on self- and assisted-420 

driving, where the subjective experience of a given time headway was not influenced by 421 

speed (Siebert et al., 2014, 2017). The assumption of equal comfort for identical time 422 

headways can therefore not be extended to highly automated driving. It is important to keep in 423 

mind that this study differs from earlier studies on time headway and subjective experience, in 424 
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that the simulated car in this study was highly automated. In contrast to earlier studies (see 425 

Section 1.1.), participants did not have any control over the car, which could have a general 426 

effect on perceived comfort levels for time headways. If there was a simple effect of control, 427 

i.e. that less control (as in highly automated driving) leads to less comfort for a given time 428 

headway, this effect would be constant for different speeds. This simple effect would 429 

therefore not lead to the results found in this study. Our analysis of median lever ratings 430 

reveals that with an increase in speed of 50km/h, time headway distances can be reduced by 431 

0.25 seconds without the majority of participants perceiving the distance as uncomfortable. 432 

Although the relative validity of driving simulators has been established for speed and vehicle 433 

to vehicle distances (Godley, Triggs, & Fildes, 2002; Risto, & Martens, 2014), the exact time 434 

headway distances found in this study might not be directly transferable to real life driving. 435 

Nonetheless, our results indicate that time headways in highly automated driving will need to 436 

be adaptive to speed. 437 

In our second hypothesis we postulated that reduced visibility leads to a decrease in comfort 438 

ratings when compared to the same distances in the clear visibility condition. In this study, 439 

participants rated time headways as significantly less comfortable when visibility was reduced 440 

by a truck or due to fog, supporting our hypothesis. Our analysis of median comfort ratings 441 

shows that reduced visibility requires an increase in up to 1 second time headway, to maintain 442 

a comfortable rating of the distance by a majority of the participants. As discussed earlier, 443 

research on self-driving has not found a consistent effect of reduced visibility on car 444 

following behavior. The results of this study appear to support findings of increased headway 445 

following in reduced visibility conditions, and expand these findings to highly automated 446 

driving.  447 

While there was no significant difference of comfort ratings between the fog and the truck 448 

condition, there was a significant interaction of visibility and speed. Although the effect just 449 

failed to be significant in posthoc testing, following a truck was descriptively rated as less 450 

comfortable than following in fog in the 50km/h condition. This descriptive effect was not 451 

present in the 100 or 150km/h condition.  452 

A descriptive effect of fog on comfort ratings of time headways can be observed for larger 453 

time headways. While comfort increases with time headways in the truck condition, comfort 454 

ratings stay more constant in the fog condition, although time headway distances are 455 

increasing. This effect is most pronounced in the 150km/h condition. A possible explanation 456 

for this effect is the visibility limit of 200 meters set for the fog condition in this study. 457 
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Although even in the largest time headway conditions of four seconds the lead vehicle is 458 

always visible (as the largest distance of the 150km/h condition is 166.66 meters), the lead 459 

vehicle is close to the edge of the visible driving environment. While this does not directly 460 

influence the following car, participants might anticipate a potential loss of visibility of the 461 

lead vehicle. This might be the onset of the effect of close following to keep eye-contact to 462 

the lead vehicle, found by Broughton et al. (2007). The influence of the visibility range of 463 

driving in fog needs to be researched further to be able to interpret the influence of this effect.  464 

This study has multiple limitations. The simulation of driving in a fixed based simulator, and 465 

especially the simulation of fog is different from real life driving and reduced visibility in the 466 

real-life driving environment. The inconclusive results of earlier studies on the influence of 467 

fog on following distances (Broughton, Switzer, and Scott, 2007; Saffarian, Happee, De 468 

Winter, 2012; Van der Hulst, Rothengatter, Meijman, 1998) could in part be attributed to 469 

differences in the display of fog in driving simulators. The results therefore have to be 470 

confirmed in real life driving conditions. Although the truck condition was introduced to 471 

restrict the forward visibility of participants, the truck model differed from vehicle models in 472 

the fog and clear condition due to its larger size. Vehicle size has been found to influence 473 

following behaviour (Brackstone, Waterson, & McDonald, 2009; Duan, Li, & Salvendy, 2013; 474 

Green & Yoo, 1999; Sayer, Mefford, & Huang, 2000). As such, effects found in the truck 475 

condition cannot be solely attributed to the obstructed forward view, but could further be 476 

influenced by the larger vehicle size. Future experiments should take this into account, e.g. by 477 

using a lead vehicle model of normal size with opaque windows. 478 

The highly automated vehicle that was simulated in this study was considerably simplified. 479 

The car drove with a constant speed of 50, 100, or 150km/h, kept the lane perfectly, and never 480 

overtook another vehicle. Future studies need to simulate highly automated vehicles that are 481 

closer to their real life counterparts in their behavior. The exposure to highly automated 482 

driving was very limited for most participants, it can be assumed that none of them had used a 483 

highly automated vehicle in the past. It seems advisable to give participants more time to 484 

familiarize themselves with the behavior of the simulated car as drivers need time to develop 485 

a mental model of a car’s automation (Beggiato, Pereira, Petzoldt, Krems, 2015). Apart from 486 

little experience with highly automated driving, participants in this study were relatively 487 

young, with a mean age of only 22.5 years, resulting in a relatively short driving experience. 488 

Hence, future studies should aim to have a more representative sample. 489 
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In contrast to earlier studies on the topic of time headway and vehicle automation (Siebert et 490 

al., 2014, 2017) there was no self-driving condition in this study, where the driver has 491 

complete control over the vehicle. Implementing a self-driving condition in this study within 492 

the experimental framework of comfort rated on a scaling lever would not have been possible, 493 

since drivers need both hands to control the vehicle in self-driving, i.e. drivers cannot rate 494 

their comfort through the lever while driving. Since it is unclear how comfort of time 495 

headways in self- and highly automated driving relate to each other, future studies should 496 

include a self-driving condition, even if it uses a different methodology for the collection of 497 

comfort data. Further, despite earlier studies on the use of haptic rating devices (Charlton, 498 

Starkey, Perrone, & Isler, 2014; Vehrs, 1986) for the subjective experience of study 499 

participants, the novel use of a rating lever in traffic psychological experiments necessitates 500 

the replication of our results with established methodological approaches. Despite these 501 

limitations, this study provides a basis for the further investigation of additional variables that 502 

influence following distances in highly automated driving.  503 

In summary, the results of this study add to the existing literature on car following and are a 504 

first step in expanding the field of research on car following from self-driving to highly 505 

automated driving. Speed influenced the comfort ratings of time headways, a finding that 506 

contrasts with results found in self and assisted driving. Reduced visibility led to a decrease in 507 

comfort. Results indicate that time headways in highly automated driving will need to be 508 

adaptively adjusted to speed and the road environment. Future studies need to investigate 509 

these effects in real life driving, and investigate the influence of differences in visibility range 510 

during fog in more detail. 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 
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